

 Navigation

 	
 index

 	
 next |

 	scrapy_guru 0.0.1 documentation »

Warning

This project is deprecated and it has been merged into Scrapy Tutorial Series: Web Scraping Using Python [https://blog.michaelyin.info/scrapy-tutorial-series-web-scraping-using-python/?utm_source=github&utm_medium=website&utm_campaign=scrapy_guru]

Getting help

Basic concepts

	Intro

	Introduction of this project

	Installation

	How to install and config this project

	Read before you start

	Something you should know before you start

Advanced topic

	Enhance your browser

	How to enhance your browser to make it help you develope spider

	Enhance your terminal

	How to enhance your terminal shell.

	Troubleshoot spider

	How to troubleshoot your scrapy spider.

	Mitmproxy

	How to inspect your http request.

Task List

	Basic extract

	Understand the spider workflow and basic xpath syntax.

	Json extract

	Learn to use json module to extract json data.

	Ajax extract

	Learn to inspect ajax request.

	Ajax Header

	Learn to inspect http header of ajax request.

	Meta StoreInfo

	Learn to pass additional data to callback functions

	Ajax Cookie

	Learn to analyze cookie of http request.

	Ajax Sign

	Learn to analyze minified js and debug code in browser.

	Regex extract

	Learn to use regex expression to extract info.

	List page and products extract

	Learn to extract products from list pages.

	List page and pagination extract

	Learn to extract info from list page and handle pagination.

 © Copyright 2016, michaelyin.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	scrapy_guru 0.0.1 documentation »

Intro

What is contained in this project.

	A list of tasks which covers many basic points in spider development, each task is a short exercise. You will be able to solve real complex problem after you solve the simple tasks step by step. This idea derive from code kata [https://en.wikipedia.org/wiki/Kata_(programming)]

	Some advanced tips and notes which help you improve the development productivity, and it will introduce you some great tools.

Supplement instead of alternative of scrapy doc

Scrapy doc is a good start for people who want to learn to write spider by using scrapy. Since scrapy doc mainly focus on the components and concepts in scrapy, some points which make sense in spider development with scrapy are missed in the doc. That is why I created this project.

I did not talk much in componetns of scrapy in this doc. It is strongly recommend user to read scrapy official doc [https://doc.scrapy.org/en/latest/index.html] first to have a basic understanding such as how to create spider and how to run spider in scrapy. You might can not get some points here if you have no idea how the spider work in scrapy. If you have question for scrapy, please check it in official doc first.

Doc

http://scrapy-guru.readthedocs.io/en/latest/index.html

Support Platform

OSX, Linux, python 2.7+, python 3.4+

Get started

First, you should take a view of the workflow figure of this project to know how this project work and read basic concepts [http://scrapy-guru.readthedocs.io/en/latest/#basic-concepts] in doc.

Secondly user will choose one task in online doc of project and get started, it is recommended to solve the task in doc order considering the learning curve. User should create spider as doc asked and run the spider to get the data as expected. There is a sample spider callled basic_extract in the project, just follow it to create new one and troubleshoot If user can not make the spider to work, you can also check the working spider code in the solution repo which I will push later.

Thirdly user can get some advaned advise or tips in advanced topic [http://scrapy-guru.readthedocs.io/en/latest/#advanced-topic] , you can learn how to enhance your browser to make it more helpful in spider development or other stuff.

Workflow

Please click the image for better resolution.

[image: _images/scrapy_tuto.png]

Project structure

Here is the directory structure:

.
├── docs
│ ├── Makefile
│ ├── build
│ └── source
├── requirements.txt
├── spider_project
│ ├── release
│ ├── scrapy.cfg
│ └── spider_project
└── webapp
 ├── content
 ├── db.sqlite3
 ├── manage.py
 ├── staticfiles
 ├── templates
 └── webapp

	docs contains the html documentation of this project

	webapp is a web application developed by Django, we can see this app as a website which show us product info and product links, and we need to write spider to extract the data from it.

	spider_project is a project based on Scrapy which we should write spider in it to extract data from webapp.

First glance

So here is an example product detail page, it is rendered by webapp mentioned above.

[image: _images/first_glance.png]
Now according to task [http://scrapy-guru.readthedocs.io/en/latest/tasks/basic_extract.html] in the doc, we need to extract product title and desc from the product detail page

Here is part of spider code:

class Basic_extractSpider(scrapy.Spider):
 taskid = "basic_extract"
 name = taskid
 entry = "content/detail_basic"

 def parse_entry_page(self, response):
 item = SpiderProjectItem()
 item["taskid"] = self.taskid
 data = {}
 title = response.xpath("//div[@class='product-title']/text()").extract()
 desc = response.xpath("//section[@class='container product-info']//li/text()").extract()
 data["title"] = title
 data["desc"] = desc

 item["data"] = data
 yield item

We can run the spider now, the spider will start to crawl from the self.entry and it will check the data scraped automatically. if the data scraped have some mistake, it will give the detail of the error and help you get the spider work as expect.

 © Copyright 2016, michaelyin.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	scrapy_guru 0.0.1 documentation »

Installation

Clone the project

git clone https://github.com/michael-yin/scrapy_guru.git

Virtual environment

If you have no idea what virtual environment is, please take look at https://virtualenv.pypa.io/en/stable/installation/

After you created virtual env and activated it, just pip install -r requirements.txt to install the packages needed

Config

Assign port

You should assign a port of your localhost to make webapp to run. By default, we recommend you run web app at 8000 port

cd webapp
python manage.py runserver 8000

Config spider_project

cd spider_project/spider_project
edit settings.py , remember to change the port number if webapp is not 8000
WEB_APP_PREFIX = "http://127.0.0.1:8000/"

Done

Now you are done with installation, please read Read before you start

 © Copyright 2016, michaelyin.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	scrapy_guru 0.0.1 documentation »

Read before you start

Entry

Every task have an entry point where spider start to crawl, this entry point may be overview page which contains many product page, or it might be product detail page. or something else.

Taskid

The taskid is unique, each task have unique taskid, and we need to remember to set it in item yield from spider.

Note

entry and taskid only make sense in this project and they are not neede in normal scrapy spider

Item

The data scraped by spider should be filed in SpiderProjectItem located in spider_project/spider_project/items.py:

class SpiderProjectItem(scrapy.Item):
 # define the fields for your item here like:
 taskid = scrapy.Field()
 data = scrapy.Field()

The taskid field is the taskid you can get in each task, and the data is the data scraped, in most cases, the data field is a dict python type.

How to know if the spider work fine in each task?

Since user should create spider on himself, so spider contract [https://doc.scrapy.org/en/latest/topics/contracts.html] might not be suitable to check if the data scraped is right.

After spider yield the item, the item pipeline [https://doc.scrapy.org/en/latest/topics/item-pipeline.html] will check if the scraped data is right and the result can be found in log file. This work is done by SpiderProjectPipeline automatically.

Done

Now you are ready to start developing spider, please start here Basic extract

 © Copyright 2016, michaelyin.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	scrapy_guru 0.0.1 documentation »

Enhance your browser

Incognito mode

Incognito mode is also called Private Browsing in some browser. In this mode the browser does not save cookie and history. This property make it very easy for spider development.

In many cases, we need to find out specific value in cookie to make spider to work, in incognito mode we can easily check the value and got to know how the website might work when spider crawling from a fresh start.

If you are using chrome, just follow the steps below

	In the top-right corner of the browser window, select the Menu

	Select New Incognito Window (computer)

	A new window will open with the Incognito icon

Quickly test my xpath or css expression

There are several plugin in browser to support xpath extraction. You can try XPath Helper in google chrome, which will make it easy to evaluate xpath expression on webpage.

[image: ../_images/xpath_helper.png]
Here is how to use it. Press ctrl+shift+x to open XPath Helper, and you can see the input and output panel. You can type your xpath query string in the input panel, and the result of the xpath will show on the right side and in the web page the selected content will have a yellow backgroud, which is very easy to check if the xpath expression is right.

Note

What you should concern here is that in some cases the xpath espression which indeed work in browser can not work on raw html becuase some DOM element might been modified by js, so please test it in scrapy shell before write it in spider code.

If you do not want to install extention to make this done, google chrome has built-in support to query xpath and css expression. Take a look at $() and $x() in console, and follow this tutorials [https://doc.scrapy.org/en/latest/index.html].

Use web dev tools

Here is overview screnshot about the web dev tools of google chrome, you can learn more here: https://developers.google.com/web/tools/chrome-devtools/

[image: ../_images/chrome.jpg]

Debug minified js file in chrome

How to debug minified js file in chrome.

 © Copyright 2016, michaelyin.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	scrapy_guru 0.0.1 documentation »

Enhance your terminal

Note

If you are newbie developer and have not much experience in terminal, it is not recommended for you to try content below, please focus on basic terminal concepts first. When you can master your terminal env, then you can use the tools below to improve your efficiency.

Tool

You should use good terminal tool before enter terminal world, iterm2 in osx and terminator in linux are both good tools which worth trying.

Shell

You really need try zsh combined with on-my-zsh, which is a great project in github which have over 40000+ stars. Check it
here [https://github.com/robbyrussell/oh-my-zsh]

Terminal multiplexer

Terminal multiplexer can make you switch easily between several programs in one terminal. And this patten can make you focus on the work and make you more effieicent.

You can try tmux or byobu.

Incremental history search

When you develop spider, you need to run many commands and you will find out that most of them have common patten, and you might need to change some paras and rerun.

At first, you use history command and use grep to filter the command you want. The bad part of this approach is that you always need to enter number to select history command.

Here I want to introduce a tool which can make us handle history command more easily. This tool is Zaw, its homepage is https://github.com/zsh-users/zaw .

Its a tools help you select item from source. The source here can be something such as git log, hisotry, programs or others.

The only piece of Zaw that I introduce here is its excellent history search.

We can enter multiple keywords in Zaw and then flip through results until we fount what we want.

[image: ../_images/zaw.png]
As you can see I enter crawl then the history will filtered and if I continue to enter hm then all the commands which have both crawl and hm will be filtered out, which is very handy.

Here is a great post talking about the Zaw hisotry search and config.

http://blog.patshead.com/2013/04/more-powerful-zsh-history-search-using-zaw.html

Workspace

Here is the screenshot of my workspace.

[image: ../_images/terminal.png]
You can see I have opened a lot of panels in single one tmux window, I can quickly switch between them and do not need to jump out my favorate terminal env.

 © Copyright 2016, michaelyin.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	scrapy_guru 0.0.1 documentation »

Troubleshoot spider

Scrapy shell

scrapy shell is a scrapy command which provides us a interactive shell where we can test our code and check the output.

It is stronglly recommended to install ipython [http://ipython.org/] with scrapy. ipython offers introspection, rich media, shell syntax, tab completion, and history.

For example, when you try to solve Basic extract , you can use scrapy shell quickly test your code.

	enter scrapy shell to open scrapy shell

	use fetch http://127.0.0.1:8000/content/detail_basic to get web page we want to analyze

	you can use response.xpath and response.css to test your expression in this web page, this can quickly find out the error, in this task, we can test response.xpath("//div[@class='product-title']/text()").extract()

	if the output is right, just copy the code in spider.

Scrapy parse

scrapy parse can help you test your method to make sure it work fine. Here is a example

scrapy parse --spider=basic_extract --loglevel=DEBUG -c parse_entry_page "http://127.0.0.1:8000/content/detail_basic"

Make sure to use this to test your methods and it will save your a lot of time later, trust me!

Print log

Log is the only way to figure out what really happend when scrawl working. So I will give you some suggestion about the log.

The spider may raise exception when working due to the different html structure or something else, you might need to log the entire html souce code to analyze later. Here is an example, we print the response.body in log to troubleshoot.

self.logger.debug('error occur at ' + response.url)
self.logger.debug(response.body)

PDB

I do not understand why scrapy not recommend pdb over scrapy shell, in my opinion pdb is the best debuging tool when developing spider.

You can set breakpoint, conditional breakpoint in spider, inspect variable in pdb shell, and print traceback, which make debug work easier. Somebody might not know ipdb. I must say ipdb add some more usefull feature to pdb and it is worthile to give it a try.

Take a look at this great post [https://pymotw.com/2/pdb/]

 © Copyright 2016, michaelyin.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	scrapy_guru 0.0.1 documentation »

Mitmproxy

Intro

mitmproxy is an interactive, SSL-capable intercepting proxy with a console interface.

Pros and cons

Here is list of the popluar network tools user use to inspect http traffic.

	wireshark
	Fiddler
	Charlesproxy
	Mitmproxy

	Win, OSX, Linux
	Win
	OSX
	Win, OSX, Linux

	GUI(Qt, GTK)
	GUI(Native)
	GUI(Native)
	Console

As we can see, mitmproxy has no gui interface for newbie user to inspect http request, but in my eyes this is the great advantage because we can launch mitmproxy in terminal and quickly detect http request

How to use mitmproxy to speed the development of spider

Terminal

Mitmproxy work fine in my terminal env and I can quickly switch between tools which used in spider deveopment. You can read Enhance your terminal.

In mitmproxy I can quickly check content of http requests by entering some key.

Filter

Sometime you know the website might use some ajax request to get the data you want to scrape, so you go to the network panel of your spider try to check the detail of the request. After you click 10+ links, your are tired and hope some tool can save your life here.

mitmproxy can really help you here.

You can write filter expression to make mitmproxy filter the request based on the expression. For example, if you want to filter http request which have content MAMA Jersey Top , you can use the expression ~b "MAMA Jersey Top" , or you can filter the http reqeusrt based on url, response.body, response.header

You can give it a try and I promise you will be surprised.

If you want to analyze https

When you start to use mitmproxy, it is stronglly recommened to install the CA certificate before you start because if you did not install the CA certificate you can not make mitmproxy inspect https request.

Take a look at this after install.

http://docs.mitmproxy.org/en/stable/certinstall.html

 © Copyright 2016, michaelyin.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	scrapy_guru 0.0.1 documentation »

Basic extract

Goal

There are mainly two ways in web crawling package such as scrapy, beautifulsoup to extract info from html, one is css and the other is xpath, you can learn css here [https://api.jquery.com/category/selectors/] and xpath here [https://msdn.microsoft.com/en-us/library/ms256471%28v=vs.110%29.aspx]

I must say there is not much difference between them, you can pick the one you prefer in spider developing.

You might need quickly test your xpath or css expression in your browser, check it here Quickly test my xpath or css expression

I have created basic_extract spider to show you how to use it in this project. You are free to delete it and create your own or modify it.

Entry

If you have no idea what entry and taskid is, check Read before you start

Remember to config WEB_APP_PREFIX which located in spider_project/spider_project/settings.py

Entry:

content/detail_basic

If your webapp is working on 8000, click the link below

http://127.0.0.1:8000/content/detail_basic

Taskid

Taskid:

basic_extract

Detail of task

Once you finish the coding just run scrapy crawl basic_extract --loglevel=INFO to check the output, this command is a scrapy command which run spider which have name basic_extract and set the logging level to INFO. This command will run the spider, crawl the data and check the data. Results will show up in terminal

In this task we extract the title, description from the entry page (above), the final data should be:

[{
 "data": {
 "desc": ["55% cotton, 40% polyester, 5% spandex.", "Imported", "Art.No. 85-8023"],
 "title": ["MAMA Jersey Top"]
 },
 "taskid": "basic_extract"
}]

Advanded

Note

What you should concern in this task is that in some cases the xpath espression which indeed work in your browser can not work on raw html becuase some DOM element might been modified by js, so please test it in scrapy shell before write it in spider code.

 © Copyright 2016, michaelyin.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	scrapy_guru 0.0.1 documentation »

Json extract

Goal

Recently many websites start to use json format to save data. So we need to learn how to handle this situation.

Entry

If you have no idea what entry and taskid is, check Read before you start

Remember to config WEB_APP_PREFIX which located in spider_project/spider_project/settings.py

Entry:

content/detail_json

If your webapp is working on 8000, click the link below

http://127.0.0.1:8000/content/detail_json

Taskid

Taskid:

json_extract

Detail of task

In this task we try to crawl product title and price info. You should find out that the value returned by xpath is not the one you see in your brower. Because javascript have change that.

Once you finish the coding just run scrapy crawl json_extract --loglevel=INFO to check the output

The final data should be:

[{
 "data": {
 "price": "$ 13.99",
 "title": "MAMA Jersey Top"
 },
 "taskid": "json_extract"
}]

Advanded

Note

Sometime there are some unicode char in the raw json string which might cause program raise UnicodeDecodeError. You should remember before runing json.loads, make the the json_data is decoded as unicode string type. If there are some syntax error in json string, you can use json lint [http://jsonlint.com/] to help you figure out where the error is.

 © Copyright 2016, michaelyin.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	scrapy_guru 0.0.1 documentation »

Ajax extract

Goal

Recently many websites get product info through ajax request so it make sense for us to quickly figure out how it works and find a way to get the real data.

If you have no idea what ajax is, read it [http://www.w3schools.com/xml/ajax_intro.asp]

Entry

If you have no idea what entry and taskid is, check Read before you start

Remember to config WEB_APP_PREFIX which located in spider_project/spider_project/settings.py

Entry:

content/detail_ajax

If your webapp is working on 8000, click the link below

http://127.0.0.1:8000/content/detail_ajax

Taskid

Taskid:

ajax_extract

Detail of task

In this task we try to crawl product title and price info. You should find out that the value in html is not the one you see in your brower.

You can check the network panel of your brower to filter out ajax url the browser used and try to implement it in your spider. You should yield a request in parse_entry_page method to minic ajax request.

[image: ../_images/ajax_extract.png]
Once you finish the coding just run scrapy crawl ajax_extract --loglevel=INFO to check the output

The final data should be:

[{
 "data": {
 "price": "$ 12.99",
 "title": "MAMA Jersey Top"
 },
 "taskid": "ajax_extract"
}]

Advanded

Note

You must be able to use tools of browser to analyze http request. see Use web dev tools.

 © Copyright 2016, michaelyin.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	scrapy_guru 0.0.1 documentation »

Ajax Header

Goal

Some backend systems would check http header to block some abnormal request. In this case we need to make sure the request from our spider will hsave the same http header as we see in the browser.

You should check the http header in the browser first and then implement it in your spider.

If you have no idea what http header is , check here [https://en.wikipedia.org/wiki/List_of_HTTP_header_fields]

Entry

If you have no idea what entry and taskid is, check Read before you start

Remember to config WEB_APP_PREFIX which located in spider_project/spider_project/settings.py

Entry:

content/detail_header

If your webapp is working on 8000, click the link below

http://127.0.0.1:8000/content/detail_header

Taskid

Taskid:

ajax_header

Detail of task

In this task we try to crawl product title and price info. You should find out that the value in html is not the one you see in your brower.

Once you finish the coding just run scrapy crawl ajax_header --loglevel=INFO to check the output

The final data should be:

[{
 "data": {
 "price": "$ 12.99",
 "title": "MAMA Jersey Top"
 },
 "taskid": "ajax_header"
}]

Advanded

Note

Actually you can use some proxy tools to help you analyze http request easier, visit Mitmproxy.

 © Copyright 2016, michaelyin.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	scrapy_guru 0.0.1 documentation »

Meta StoreInfo

Goal

Sometime if you want to pass value between more than one http pages, then you will need response.meta as a tmp datatable.

You can learn more here [https://doc.scrapy.org/en/latest/topics/request-response.html#passing-additional-data-to-callback-functions]

Entry

If you have no idea what entry and taskid is, check Read before you start

Remember to config WEB_APP_PREFIX which located in spider_project/spider_project/settings.py

Entry:

content/detail_header

If your webapp is working on 8000, click the link below

http://127.0.0.1:8000/content/detail_header

Taskid

Taskid:

meta_storeinfo

Detail of task

In this task we try to crawl product title, product description, price info.

You should be concern that the description is in the raw html, but the title and price info should be given by ajax. To deal with this situation, you should save the description in response.meta and pass it in request.

The final data should be:

[{
 "data": {
 "price": "$ 12.99",
 "description": ["55% cotton, 40% polyester, 5% spandex.", "Imported", "Art.No. 85-8023"],
 "title": "MAMA Jersey Top"
 },
 "taskid": "meta_storeinfo"
}]

 © Copyright 2016, michaelyin.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	scrapy_guru 0.0.1 documentation »

Ajax Cookie

Goal

It is importtant to analyze cookies of http request in many cases

If you have no idea what cookie is , read it [http://www.w3schools.com/js/js_cookies.asp]

If you are using chrome, try visiting chrome://settings/cookies , then you can inspect all cookies in your browser.

Entry

If you have no idea what entry and taskid is, check Read before you start

Remember to config WEB_APP_PREFIX which located in spider_project/spider_project/settings.py

Entry:

content/detail_cookie

If your webapp is working on 8000, click the link below

http://127.0.0.1:8000/content/detail_cookie

Taskid

Taskid:

ajax_cookie

Detail of task

In this task we try to crawl product title, product description, price info.

After some tests, you might find out it is hard to make the spider get the data through ajax, so you need to dive into the detail of the ajax request.

You need to make sure the url, http header, cookie values are all reasonable.

Once you finish the coding just run scrapy crawl ajax_cookie --loglevel=INFO to check the output

The final data should be:

[{
 "data": {
 "price": "$ 20.00",
 "description": ["55% cotton, 40% polyester, 5% spandex.", "Imported", "Art.No. 85-8023"],
 "title": "Congratulations"
 },
 "taskid": "ajax_cookie"
}]

Advanded

Note

When dealing with cookies in browser, it seems a fresh start without any cookie is a good start. see Incognito mode.

 © Copyright 2016, michaelyin.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	scrapy_guru 0.0.1 documentation »

Ajax Sign

Goal

Many websites now minified js file when deployment, so we should learn how to analyze the minmized code in browser and try to debug it in some cases to figure out the workflow. This process is like disassemble in reverse engineering.

Entry

If you have no idea what entry and taskid is, check Read before you start

Remember to config WEB_APP_PREFIX which located in spider_project/spider_project/settings.py

Entry:

content/detail_sign

If your webapp is working on 8000, click the link below

http://127.0.0.1:8000/content/detail_sign

Taskid

Taskid:

ajax_sign

Detail of task

In this task we try to crawl product title, product description, price info.

You found out that the ajax url used sign in the url but you have no idea where it is from, and it seems the js file detail_sign.js is minified.

Once you finish the coding just run scrapy crawl ajax_sign --loglevel=INFO to check the output

The final data should be:

[{
 "data": {
 "price": "$ 20.00",
 "description": ["55% cotton, 40% polyester, 5% spandex.", "Imported", "Art.No. 85-8023"],
 "title": "Congratulations"
 },
 "taskid": "ajax_sign"
}]

Advanded

Note

Learn how to pretty print minified js and debug the minified js, How to debug minified js file in chrome

 © Copyright 2016, michaelyin.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	scrapy_guru 0.0.1 documentation »

Regex extract

Goal

Regex is a very powerful tool when dealing with text, you have no reason to ignore it. A regulare expression is a string describing a certain amount of texts. If you have no knowledge of regex, you should learn it before you begin this task.

You can read this great tutorials here [https://regexone.com/] , once you have learned regex, you can try this online regex tool [https://www.debuggex.com/] to quickly test your regex written in python.

Entry

If you have no idea what entry and taskid is, check Read before you start

Remember to config WEB_APP_PREFIX which located in spider_project/spider_project/settings.py

Entry:

content/detail_regex

If your webapp is working on 8000, click the link below

http://127.0.0.1:8000/content/detail_regex

Taskid

Taskid:

regex_extract

Detail of task

In this task we try to crawl product title and price info. Since the data in js is not very easy to extract, regex is a good tool to handle this situation.

Once you finish the coding just run scrapy crawl regex_extract --loglevel=INFO to check the output

The final data should be:

[{
 "data": {
 "title": "Regex is important",
 "price": "$ 13.99"
 },
 "taskid": "regex_extract"
}]

 © Copyright 2016, michaelyin.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	scrapy_guru 0.0.1 documentation »

List page and products extract

Goal

In most cases, your spider should start from a list index page and crawl all the product links in the page, so in this task you will learn how to write spider to work in this case.

Entry

If you have no idea what entry and taskid is, check Read before you start

Remember to config WEB_APP_PREFIX which located in spider_project/spider_project/settings.py

Entry:

content/list_basic/1

If your webapp is working on 8000, click the link below

http://127.0.0.1:8000/content/list_basic/1

Taskid

Taskid:

list_extract

Detail of task

There are 10 products in list page 1, you should extract all product links first, and for each product, you should crawl title, price, and sku. Sku can be extracted from product url

Once you finish the coding just run scrapy crawl list_extract --loglevel=INFO to check the output

The final data is too long, this is part of it:

[{
 "data": {
 "sku": "0184140017",
 "price": ["$14.99"],
 "title": ["Washed linen table runner-Anthracite grey"]
 },
 "taskid": "list_extract"
}, {
 "data": {
 "sku": "0184140016",
 "price": ["$14.99"],
 "title": ["Washed linen table runner-Grey"]
 },
 "taskid": "list_extract"
}, {
 "data": {
 "sku": "0184124001",
 "price": ["$19.99"],
 "title": ["Lace table runner-White"]
 },
 "taskid": "list_extract"
}]

 © Copyright 2016, michaelyin.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 previous |

 	scrapy_guru 0.0.1 documentation »

List page and pagination extract

Goal

The only difference between this task and List page and products extract is that thie task also needs deal with pagination

Entry

If you have no idea what entry and taskid is, check Read before you start

Remember to config WEB_APP_PREFIX which located in spider_project/spider_project/settings.py

Entry:

content/list_basic/1

If your webapp is working on 8000, click the link below

http://127.0.0.1:8000/content/list_basic/1

Taskid

Taskid:

list_extract_pagination

Detail of task

There are about 100+ products in all list pages, you should crawl them all, for each product, you should crawl title, price, and sku. Sku can be extracted from product url

The final data is too long, this is part of it:

[{
 "data": {
 "sku": "0447183001",
 "price": ["$14.99"],
 "title": ["Textured trinket box-White"]
 },
 "taskid": "list_extract_pagination"
}, {
 "data": {
 "sku": "0463014001",
 "price": ["$39.99"],
 "title": ["Cotton terry dressing gown-Light grey"]
 },
 "taskid": "list_extract_pagination"
}]

 © Copyright 2016, michaelyin.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	scrapy_guru 0.0.1 documentation »

Index

 © Copyright 2016, michaelyin.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	scrapy_guru 0.0.1 documentation »

How to debug minified js file in chrome

In this post, I will show you how to use dev tools in chrome to debug a minified js file.

[image: ../_images/chrome_debug1.png]
As you can see in the image above, the content in detail_sign.js is minified, and it seems it is hard to read and debug. We should find a way to make the code readable and debug step by step to figure out what happend in this js file.

[image: ../_images/chrome_debug2.png]
Follow step to click the button to pretty print the file, now the js code will be reformatted and you can read it. You can set breakpoint in it for later debug. You should remember to close the old minified file in the tab since in some cases chrome will not work as expect if you keep two files in the tab.

[image: ../_images/chrome_debug3.png]
Now you can reload the page and chrome will block at the breakpoint. you can use debug tools to debug it and check the variable.

[image: ../_images/chrome_debug4.png]
Here is cheatsheet of clickable icons.

[image: ../_images/chrome_debug5.png]
You can learn more here: https://developers.google.com/web/tools/chrome-devtools/

 © Copyright 2016, michaelyin.
 Created using Sphinx 1.4.8.

 _images/zaw.png
filter: crawl||
scrapy crawl toryburch —loglevel=DEBUG —logfile=logs/toryburch_1.scrapy_log —a country="jp"
scrapy crawl shangpin —loglevel=DEBUG —logfile=logs/shangpin_2.scrapy_log

scrapy crawl toryburch —loglevel=DEBUG —logfile=logs/toryburch_1.scrapy_log —a country="it"
scrapy crawl toryburch —loglevel=DEBUG —logfile=logs/toryburch_1.scrapy_log —a country="eu!
scrapy crawl toryburch —loglevel=DEBUG —Logfile=logs/toryburch_1.scrapy_log
scrapy crawl toryburch —loglevel=DEBUG —Logfile=logs/toryburch_1.scrapy_log
scrapy crawl taobao —loglevel=DEBUG —logfile=logs/taobao_17.scrapy_log
scrapy crawl taobao —loglevel=DEBUG —logfile=logs/taobao_16.scrapy_log
scrapy crawl tmall oglevel=DEBUG —logfile=logs/tmal

129/355]

_images/first_glance.png
MAMA Jersey Top
(CONSCIOUS. Top in soft organic cotton jersey with 3/4-length sleeves. Gathers at
side seams for improved fit.

$12.99

DESCRIPTION =~ PRODUCTINFO REVIEWS

+ 55% cotton, 40% polyester, 5% spandex.

I

_images/chrome_debug2.png
[x (4] Elements Console Sources Network Timeline Profies Application ~Security Audits

Sources Contentsc... Snippets i
vOw
v O 127.0.0.1:8000
v i content
i detaisign
> o statc
» & (no domain)
> O BHREMAMNLNTIR: BER:
» O vomnibarhtm!

1

{}

[detailsigns x

define(function(require, exports,module) {var jquery=require("jouery');var bootstra
function AddUnsigned(1X, 1Y) {var X4, 1v4, X8, 1¥8, Result; XB=(LX6ex80000000) ; 1Y8=(1YE
7 (1X4] 1¥4){17(1Resul t60x20000000) { return(LResult"0xC08D0000N XBALYS) ; belsedreturn(L
function F(x,y,2){return(x&y)| ((~x)&2);}

function G(x,y,2){return(x62) | (y&(~2));}

function H(x,y,2){return(x"y*2);}

function I(x,y,2){return(y~(x](*2)));}

function FF(a,b,c,d,x,s,ac) {a=AddUns igned (a, AddUnsigned (AddUnsigned (F(b, c,d) ,x) ,ac))
‘WordCount=(1ByteCount~{ ByteCount'ed))/ 4; BytePosition=(1ByteCountha)+8; tWordArray [
return WordToHexValue; }; function Utf@Encode(string){string=string. replace(/\r\n/g,"\
return utftext;}ivar x=Array();var k,AR,B3,CC,0D,a,b,c,d;var S11=7,512=12,513=17,514
var temp=HordToHex (a) #ordToex (b) ordToHex (c) +WordTohex(d); return_temp. toLowerCase
Jauery(function(){var token=jquery.cookie(' token');var sign=0s(token); jquery.ajax({

Click here to pretty format

Line 1, Column 1

_images/scrapy_tuto.png
Project intro
2. Task list manual

Web App Spider Project

1. Sample product overview page and Spider project which extract data from Web A
detail page and check the data to see if the spider written is rwht
2. /manage.py runserver 8000 2. scrapy crawl basic_extract loglevel=INFO

_static/comment.png

_images/xpath_helper.png
(1)
y Plug-Tn Di

PetSupplies Brands Bestsellers Markdowns Dogs Cas SmallAnimals Fish&Aquatics Bids Repiles Gitideas TopDeals Coupons

Feliway Plug-In Diffuser with bottle, 48 Milliliters Share v e
by Feliway
Kk Kk 1,046 customer reviews | 22 answered questions
Q1w
List Price: $34.90 Yes, | want FREE Two-Day
Price: $25.49 & FREE Shipping on orders over $35. Detalls Shipping with Amazon Prime

You Save: $9.50 (27%)

it B e

Ships from and sold by Amazon.com. Gift-wrap available.
Want it Tuesday, March 42 Order within 35 hrs 49 mins and choose One-Day Shipping at checkout. Detalls “
Sign in to tum on 1-Click ordering.
Simulates your cat?s natural pheromones to help your pet cope with stress
Just plug into any wall socket
Completely safe and made to comply with British safety standards Add to Wish List
Do not plug in beneath fumiture or behind doors

_static/plus.png

_images/chrome_debug3.png
[x [| Eements Console Sources Network Timeline Profiles Application Security Audits

Sources | Content sc... Snippets i |[{ detail signjs tail_sign s:formatted x
YO 1] detine(funct ion(reqT Pemaggorts, modute) {
var jquery = require('] i,
v 127.00.1:8000 S| ar bootstrap = require(boots
v i content 4 var global = requirel‘globat’)
L] 5 reauire("lin/javery.cookien); close the old file
[detai_sign 6 var MDS = function(string) {
+ o st Tunction RotateLers Walue, iShiftpics) {

o ceturn (Walue < ishitaits) | (Walue > (32 - iSniftaits));

» & tno domain) H }

5 5 10 Tunction AGGOR

’gmﬁb”fﬁfmmﬂ HER var Ui, 1¥a, 1ia,

» O vomnibazntm 2 ix & xg0060000) 5 .
1 1Y & oxg0000000) set breakpoint
1 X & 0x30000000)
15 W & oxdo000000);
1 WResuls = (1X & DFFFFFFF) + (1Y & GOFFFFFFF);
b i (0 & 1) 4
1 return (TResult ~ 0x60000000 ~ 1XE ~ Y8) ;
19)
20 It (e | v ¢
2 5% (Result & 0x40000000) {
x refurn (Result ~ 0xC0000000 ~ X8 ~ 18) ;
2 ¥ etse €
2 Teturn (Result ~ 0xé0000000 ~ X8 ~ 18) ;
25 }
2 b etse ¢
2 Teturn (WResult A UG A 18) 5
2 y
29, }
3 function Flx, v, 2) {
31, return (x & y) | ((~x) & 2);
32 }
3 function G(x, v, 2) {
34, return (x & 2) | (y & (~2));
35 }
3% function H(x, v, 2) {
3 return (X Ay~
38 }
3 function 1(x, v, 2) {
40, . return [y A (x| (~2))) 5
Line 1, Column 1

_static/up-pressed.png

_images/chrome.jpg
Show

drawer
Pause, Continue ;
Step Over/In/out | T8
File tree ep Over/in/Ou y
- Dockin,
Per-file tabs s
Elements Nelworkm Timeline Profiles Resources Audits Console = a' [m | M
b] | todoCtrl.js X I T 7¢ o |
22 ¥i » Watch Expressions c i
47| $scope.editTodo = function (todo) { ¥ Call Stack o C
48 $scope.editedTodo = todo; » Scope Variables
49 // Clone the original todo to restore it on demand. =
50 $scope.originalTodo = angular.extend({}, todo); v Breakpoints
g; } [7) dynamicScript.js:2

53 $scope.doneEditing = function (todo) {

$scope.editedTodo = null;

todoCtrl.js:54

)

console.log("dynanlicScfipt..

55 todo.title = todo.title.trim(); $scope.editedTodo = nujl;
56 e
7 3 [#) todoCtrl.js:58
57 if (!todo.title) { s
58 $scope. removeTodo(todo) ; scopeiienaverodaltadals
B9 } » DOM Breakpoints
gg b > XHR Breakpoints +
62| » Event Listener Bre: ints
{} Line 49, Column 47 » Workers J
Pause on
Pretty print Cuyrrent exceptions
JS&CSS line/column

Disable

breakpoints

_static/comment-bright.png

_images/ajax_extract.png
[] Ewements Console
® O ™ 7 Vew
Fie] Regex [HeedamUnLs ()] xR S oSS

Nams
] ceral sox

] bootstrapss
] detaoss

] requies

] contigis

(4] h 1ipg

(8] hm 2400
v 3ipg

] dotal joxse
[javery-18:1js
(] globatis

] bootstrapys
(] sexcerai

s00ms

Sources Network Timeline Profiles Application Security ~ Audits

200ms.

Preserve log [Disable cache

a00ms

Offine N throtting

Img Media Font Doc WS Manifest Other

a0ms

Method
GET
GeT
ceT
GeT
ceT
GeT
ceT
GeT
ceT
GeT
ceT
GeT
ceT

Status
200
200
200
200
200
200
200
200
200
200
200
200
200

sooms

Tipe
document
stylesheet
stylesheet
seript
seript
Ipeg

pog

Ipeg
seript
seript
seript
seript

e

7o0ms sooms
Initator Sizo

Other 42k8
detal siaxs 144K8
detal aiax10 25K8
getal siax13 s03K8
detal aiaxta 7858
detal siax32 236K8
detal aigcat 217K8
detal aiaxas a27K8
roquire 511895 6s68
roquire 511895 262K8.
roquire 511895 25K8
roquire 511895 67.5K8
laueny-19.1 58526 1748

Time

0.

ams

8ms.

oms.
1oms.
26ms
20ms
15ms.
atms
25ms
18ms.
19ms.

8ms.

s00ams

Timeline - Start Timea

|

_static/file.png

_images/terminal.png
In [1]:

[1:tmall.py] [3:hm.py]*![5:1ocal_settings_product.py]

‘old_price_text': u'',

./-MiniBufExplorer— 100% 'old_price_value': None,
1234 def extract_price(self, response): ‘pattern': u'',

1258 def extract_color(self, json_data, response): 3 *product_id': None,

1262 def extract_images(self, json_data, response): 16 *product_stock': None,

1279 def extract_sku(self, response): 3 ‘referer_url': u'http://api.hm.com/v2/us/en/products/display?categories=ladies%2Fcardigans_jumpers%2Fponchos&concealCategor
1283 def parse_product_page(self, response): 68—Jies=truespagesize=20spage=1',

class ParserFR(ParserBase! ‘rgb': u't,

1353 def parse_home_page(self, response): 36- 'save_availability': False,

1390 def extract_category_info_from_url(self, response): 27 'save_| False,

1418 def parse_levl_category_page_fr(self, response): 51 'season’

1470 def check_sale_category_page(self, response): 14- 'size_infos': [1,

1485 def parse_lev2_category_page_fr(self, response): 58 'sku': u'54008"

1544 def parse_lev3_category_page_fr(self, response): 21 *third_party_vendor B

1566 def generate_next_page_fr(self, response): 64 'timestamp': '2016-11-22 11:

1631 def extract_product_fr(self, resfon; H 68- ‘title! .

1700 def extract,atner,ca\m,fr(se\fv response) : 28 tupe': ',

1729 def correct_301_url(self, response 17 'update_details': False,

1747 def extract_title_fr(self, json_data, response): 8 'url': u'http://www.hm.com/us/product/540047article=54004-A",

1756 def extract_desc_fr(self, json_data, response): & ‘use_size_level_prices': False,

1763 def extract_material_fr(self, json_data, response): 8 5t

1772 def extract_images_fr(self, json_data, response): 8 4+0800 [scrapy] INFO: Received SIGINT, shutting down gracefully. Send again to force

1781 def extract_sku_fr(self, response): 2. 54+0800 [hm] INFO: Closing spider (shutdown)

1784 def extract_data_json_fr(self, response): 28- 4+0800 [scrapy] INFO: Received SIGINT twice, forcing unclean shutdown

1813 def extract_addition_fr(self, json_data, response):

1821 def extract_color_fr(self, json_data, response):

1827 def extract_price_fr(self, json_data, response): Sandbox ¥ michael o

1842 def extract_size_fr(self, response): 20—

o2 ot porecatnc pep ittty sl] enter comman ere

1979 def parse_variants_json(self, response) 21—

extract_sku_fr { utf-8 { python

[s] item o GET http://api.hm.con/v2/us/en/products/display?categories=ladiesk2Fcardigans_jumpersk2FponchossconcealCategor e
[s] settings <scrapy.settings.Settings object at 8x10f34ff10> s=true§pageSize=20&page=1

[s] Useful shortcuts: + 200 application/json 3.07kB 519.43k8/s

[s] shelp() Shell help (print this help) Request Response
[s] fetch(req_or_url) Fetch request (or URL) and update local objects cy:

[s] view(response) View response in a browser [cache—contro max-age=6@, post-check=60

Python 2.7.10 (default, Jul 13 2015, 12:18:59) [Date: Tue, 22 Nov 2016 03:01:51 GMT

Type "copyright", “credits" or "license" for more information. [connection: keep-alive

vary: Accept-Encoding

IPython 2.3.1 — An enhanced Interactive Python. set—Cookie: akaau=1479784011~id=cc11158ec17778cBdeaachds00abge1s; domain=.hn.com; path=/
? —> Introduction and overyiew of hon's _featul |
‘%quickref —> Quick reference. S.C llé §h eI I n
help —> Python's own help sy! “content":

Solectt 5 oLesits sbost b uee "abjecty7Jor extra detalt. et TM p roxy toin Spect reque st

{

In [1]: "activityArticleNumber"

I [
In [11: “availableSizeInfo'

_static/minus.png

_images/chrome_debug4.png
x ol
Sources | Content
vOw
v O 127.0.0.1:8000
v i content
i detaisign
> o static
» & (no domain)

Elements Console

‘Snippets

> O BIEEMABENTR: HER

Sources Network Timeline Profiles Application ~ Security ~Audits

;| [detai signjs:

errback), exports.

= Object {}, module

rmatted x
1 define(function(require, exports, module) { require = localRequire(deps, callback,
*
3| var bootstrap = require(bootstray
4 var global = require(global’)
5| require("Lib/jquery. cookie
6| var MDS = function(string) {
7 function RotateLeft(Walue, iShiftBits) {
8 return (Walue << iShiftBits) | (Walue >»> (32 - iShiftBits));
o 3
10 Tunction AddUnsigned (1, 1Y) {
1 var X4, 1v4, 1X8, 1v8, WResult;
2 8 = (1X & 0x80000000] ;
13 8 = (1Y & 0x8000000) ;
1 (1X & ex4000000) ;
15 ¥ & oxa0000000)
16 Wesult = (1X & OXIFFFFFFF) + (1Y & OIFFFFFFF);
17 if (e & 1va) 4
18 return (lResult ~ 0x80000000 ~ X8 ~ 1Y8) ;
19 3
20 if (e | e 4
21 if (lResult & 0x40000000) {
2 return (WResult 0xCB200008 ~ X8 ~ 1Y8) ;
23 ¥ etse {
24] return (WResult ~ 0x40200000 X8 ~ 1Y8) ;
2 3
26| }else {
27 return (WResult ~ X8 ~ 1¥8) ;
28| i
20| 3
30/ Function F(x, y, 2) {
31 return (x &y) | ((w) & 2);
2 3
33 Function 6(x, y, 2) {
34 return (x &2) |y & (v2));
35 3
36/ Function H(x, y, 2) {
37 return (x Ay ~2) g
38 3
E Function I(x, y, 2) {
0] Lo Oy A])
Line 8, Column 10

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

_images/chrome_debug5.png
Button Action Description

» Resume Resumes execution up to the next breakpoint. If no breakpoint is encountered, normal execution is
resumed.
> Long Resumes execution with breakpoints disabled for 500ms. Gonvenient for momentarily skipping
Resume breakpoints that would otherwise continually pause the code, e.g., a breakpoint inside a loop.

Click and hold Resume until expands to show the action.

~ Step Over Executes whatever happens on the next line and jumps to the next line.

+ Stepinto If the next line contains a function call, Step into will jump to and pause that function at ts first line.

1 StepOut Executes the remainder of the current function and then pauses at the next statement after the function
call

v Deactivate Temporarily disables all breakpoints. Use to resume full execution without actually removing your

breakpoints breakpoints. Click it again to reactivate the breakpoints.

o Pauseon Automatically pauses the code when an exception ocours.
exceptions

_images/chrome_debug1.png
[x Q] FEements Console Sources Network Timeline Profiles Application —Security —Audits

® O ™ ¥ Vew = =

| som ooms

Name
[] detaisign

] detalcss

] deta signis

[_] aiaxdetai_sign?sign="dde669619c0509.

() Preserve log @ Disable cache | (] Offine No throtting v

Hide dataURLs () XHR JS CSS Img Med Font Do WS Maniest Oner

150ms. 200ms. 250ms. a00ms. asoms. s00ms asoms sooms.

X Headers | Preview | Response Cookies Timing

define(function(require, exports,module) {var jquery=require(*juery’);var bootstrap=require(bootstrap’);var gl
function Addunsigned(1X, 1Y) {var' 1x4, Y4, X8, 1¥8, (Result; UB=(1X50xE0000000) ; 1Y8=(1Y50xB00D0000) ; LXé=(1XEOx4000
7 (1X4] L¥4){17(1Resul t60x20000000) { return (1Result0xC0800000~ IXBALYS) ; belse{return(ResultA0x40080000~ X8~ 1Y8)
function F(x,y,2){return(x&y)| ((~x)&2);}

function G(x,y,2){return(x6z) | (y&(~2))

function H(x,y,2){return(x"y*2);}
function I(x,y,2){return(y~(x] (*2)));}
function FF(a,b,c,d,x,s,ac) {a=AddUns igned (a, AddUnsigned (AddUnsigned (F(b, c,d)) ,ac)) ;return AddUnsigned (Rotatel
‘WordCount=(18yteCount~{ByteCountied))/ 4; BytePosition=(18yteCount®4)=8; Wor dArray [WordCount]=UiordArray [Lo
return WordToHexValue; }; function UtfBEncode(string) {string=string. replace(/\r\n/g,"\n");var utftext=""; for (var
return utftext rray();var k,AR,B3,CC,DD,a,b,¢,d;var S11=7,512=12,513=17,§14=22;var 521=5,52229, 52

var temp=HordToHex (a) #ordToHex (b) #ordToHex c) +WordTohex(d); return_temp. toLowerCase ()
Jauery(function(){var token=jquery.cookie(' token');var sign=Ds(token); jquery.ajax({type: "GET",url

